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Who can be a Doctor?

Hän on lääkäri. He is a doctor.

Agnieszka jest na sali operacyjnej.
Przeprowadza właśnie operację.

Agnieszka is in the operating room.
He’s in the middle of an operation.

Ona jest na sali operacyjnej.
Przeprowadza właśnie operację.

She is in the operating room.
He’s in the middle of an operation.

eine Ärztin lekarz
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Increasing Concerns about NLP Systems’ Harms
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Consequences of Harmful Behaviors

▶ Allocation and representational harms
(Blodgett et al., 2020)

▶ Broad range of applications
▶ healthcare, banking, judicial system, . . .

▶ We use them
▶ by choice: translators, voice assistants, . . .
▶ not by choice: CV filtering systems, political sentiment

analyzers, . . .
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Remedies for Harmful Behaviors

NLP MethodResources

He performs an operation

She performs an operation

He is a lawyer

▶ Harmful behaviors as a technical issue

▶ Mitigation techniques

▶ Reduce observed disparities in models’ outputs
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Harmful Behaviors are Symptoms of Bias

Bias – systematic preference or discrimination against certain
groups of users (Friedman and Nissenbaum, 1996)

Computer
Science

Comp.
Linguistics

Applied NLP

Bias

emergent

technical preexisting
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NLP Systems vs. Friedman and Nissenbaum (1996)

NLP MethodResources Output
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▶ No impact from underrepresented populations (Bender et al., 2021)

▶ Models reflect demographic imbalances (Hovy and Yang, 2021)

▶ Speech recognizers with lower accuracy for female voices
(Tatman, 2017)
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Preexisting Bias
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Gender-related Inequalities in Primary Data
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Assessing Gender Bias in Wikipedia: Inequalities in
Article Titles

Özlem ÇetinoğluAgnieszka Faleńska
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Wikipedia

▶ Commonly used source of training data for NLP models
(Devlin et al., 2019; Webster et al., 2019; Zeldes, 2017)

▶ Inequalities in representations of genders
(Callahan and Herring, 2011; Wagner et al., 2015; Schmahl et al., 2020)

▶ Focus on biographies
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Are Inequalities Present only in Biographies?

RQ1 How frequently Wikipedia titles describe concepts in an
asymmetrical way?

RQ2 Which domains?

12 / 63Example from Perez (2019)



Data

▶ Wikipedia in: Turkish, English, German, Polish

▶ Filters and heuristics

Step 1 Filtering Gender-Related Titles
Step 2 Assigning Meta-Categories
Step 3 Grouping Concept-related Titles
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Step 1: Filtering Gender-Related Titles

Women articles:
▶ Human female sexuality
▶ Women in Islam
▶ . . .

Men articles:
▶ Argentina men’s national softball team
▶ List of male jazz singers
▶ . . .
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Step 1: Result’s Size

English German Polish Turkish

TOTAL 75310 15035 13562 3985
%WIKIPEDIA 1.23% 0.67% 0.98% 1.04%
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Step 2: Assigning Meta-Categories

Three main meta-categories:
▶ SPORTS – sports teams or events
▶ LISTS – listings of people or organizations
▶ SOCIAL – history, awards, gender issues, etc.
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Step 2: Assigning Meta-Categories

Women articles:
▶ Human female sexuality – SOCIAL

▶ Women in Islam – SOCIAL

▶ . . .

Men articles:
▶ Argentina men’s national softball team – SPORTS

▶ List of male jazz singers – LISTS

▶ . . .
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Step 3: Grouping Concept-related Titles

WOMEN: Human female sexuality
MEN: Human male sexuality
GENERIC:

SOCIAL

Human sexuality

WOMEN: Women in Islam
MEN: –
GENERIC: Islam

SOCIAL

WOMEN: –
MEN: List of male jazz singers
GENERIC: –

NAMES
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Which Groups Describe Concepts Asymmetrically?

WOMEN: List of Albanian women writers
MEN: –
GENERIC: List of Albanian writers

LISTS

WOMEN: –
MEN: Men’s health in Australia
GENERIC: Health in Australia

SOCIAL

WOMEN: Violence against women in Guatemala
MEN: –
GENERIC: –

SOCIAL

WOMEN: –
MEN: List of male jazz singers
GENERIC: –

LISTS

W|G

M|G

W

M
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RQs: How Frequently Wikipedia Titles Describe
Concepts Asymmetrically? Which Domains?

▶ majority include WOMEN articles

▶ W|G and SPORTS most frequent
→ England women’s national football

team

▶ then SOCIAL, especially in W
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Frequency of Asymmetrical Groups – across
Languages

English German Polish Turkish

▶ The same pattern across languages
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Takeaways: Inequalities in Wikipedia

▶ Gender-related inequalities in Wikipedia extend beyond
biographies

▶ Systematic asymmetries in article titles

▶ Present especially in sports and social issues
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Gender-related Inequalities in Primary Data
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How-to Guides for Specific Audiences: A Corpus and
Initial Findings

Agnieszka FaleńskaNicola Fanton Michael Roth
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WikiHow

How to Repair a Flat Tire

Inflate the tire. In order to find a
leak the tire must be properly pres-
surized. You should inflate your
tire with air until it reaches the ap-
propriate pressure (measured in
psi) specified in your vehicle’s ser-
vice manual.

Visually inspect the tire. Before
moving on to more time consum-
ing techniques, you should take a
moment to look at your tire. If you
notice any holes, cuts, or objects
protruding from tire then you have
found your leak.
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WikiHow

▶ Collaboratively edited online platform for instructional texts

▶ Niche topics and articles for minority groups

▶ Prominent data source for a variety of NLP tasks
(Koupaee and Wang, 2018; Zhang et al., 2020; Cai et al., 2022)

▶ No previous work on biases
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Guides on How to Live and Behave

How to Feel Like a Kid Again

Break a few rules, within rea-
son. As adults we often feel like
we have to follow rules all the time,
but children are often more adven-
turous.

Climb a tree. The pride of accom-
plishment that comes from climb-
ing a tree and the sense of exhila-
ration that you feel when sitting up
high will take you back to a simpler
time.
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Audience-related Differences

Act Like a Kid Again (Boys) Act Like a Kid Again (Girls)

Eat your childhood favorite food.
Recollect every snack, choco-
lates, ice cream, candy bars, cot-
ton candy and everything that you
loved as a kid or would make you
feel pampered.

Eat well and exercise, but don’t ob-
sess about your body. Be healthy
without stressing too much about
it. (...) go for lots of fruits and veg-
gies. And even though kids love
sugar, don’t eat too much of it!

RQ How do wikiHow guides differ when they aim different
audiences?
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Data: Find Audience-related Guides

▶ Start from WIKIHOWTOIMPROVE (∼250k guides)
(Anthonio et al., 2020)

▶ Search for audience indicators:
Act Like a Kid Again (Boys)

Girls 370 Guys 35
for Girls 284 for Women 35
for Kids 182 Women 34
Kids 114 UK 34
Teens 110 for Men 31
Teen Girls 100 Christianity 31
for Teens 73 Men 29
USA 49 for Beginners 29
for Guys 42 Boys 25
Windows 38 Teenage Girls 25
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Data Size

▶ Groups: Women, Men, Teens, Kids
→ although more Girls and Boys than Women and Men

▶ Total 2k articles

Kids Teens Women Men

Articles 499 411 993 209
Sentences per article 29 43 40 50
Words per article 352 544 509 682
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Case Study: Guides on How to Live and Behave

How to Be . . .

How to Be Smart in School (Girls) How to Be Photogenic (Men)
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Step 2: Results

How to Be . . .

Kids vs. Teens
▶ good, comfortable, safe

How to Be Good With Money (for Kids)
How to Be a Good Friend (Teens)

Women vs. Men
▶ cute, popular
▶ cool, more

Women: Be Popular and Athletic
Be Cute at School

Men: Be Cool in High School
Be More Physically Attractive
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Generalization to All Guides

▶ Binary classification task

Do your assignments. Most people
don’t like getting homework, but it
has an important purpose.

Men vs. Women

Kids vs. Teens

▶ Features
▶ length
▶ style (Sari et al., 2018)
▶ content (uni-grams and bi-grams)
▶ RoBERTa (Liu et al., 2019)
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Can we Automatically Predict Audiences?

▶ Kids vs. Teens is an easier task
▶ All features are helpful
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RQ: How do the Guides Differ?

▶ 10 most predictive features (highest weights)

▶ Kids vs. Teens
→ audience indicators: kid, teen

Make Money (Kids) Stay Active After School (Teens)

. . . even if you’re a kid, there
are ways to bank a few extra
bucks.

When you’re a teen with a busy
schedule, it can be difficult to
find time to be active.
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RQ: How do the Guides Differ?

Women vs. Men

▶ Women: stereotypes
→ cute, makeup, skirt, outfit
→ ‘cute’ can be used pejoratively as a form of social control

(Talbot, 2019)

▶ Women: negations
→ hadn’t, wasn’t
→ negations serve a stereotype-maintaining function

(Beukeboom et al., 2010, 2020)

▶ Men: pronouns
→ heteronormative assumption: hers
→ characteristics of gender-inclusive language: theirs
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Takeaways: Inequalities in WikiHow

▶ Disparate standards and treatment

▶ Inequalities in guides for different audiences
▶ who is being more instructed
▶ the number of instructions

▶ Subtle stereotypes
▶ ‘cute’, negations
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Gender-related Inequalities in Primary Data

38 / 63Framework for Gender Bias by Dinan et al. (2020)



Self-reported Demographics and Discourse Dynamics
in a Persuasive Online Forum

Eva Maria VecciAgnieszka Faleńska Gabriella Lapesa
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/r/ChangeMyView subreddit (CMV)
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/r/ChangeMyView subreddit (CMV)

▶ Online forum targeted at persuasion

▶ Crucial for research on argument mining
(Morio et al., 2019; Egawa et al., 2020; Dayter and Messerli, 2022)

▶ Bias in argument mining
(Spliethöver and Wachsmuth, 2020; Manzoor et al., 2022)

▶ No focus on the influence of speakers demographics on
CMV discourse

41 / 63



Speakers in ChangeMyView

CMV: I am a 16 year old who wants to start smoking.

I am 16, female, and I think I should be allowed to smoke. I know about lung
cancer and what it can do to you, and I’ve seen all those adverts about bad
breath and rotting gums. (...)

author: llosa, score: 16, comments: 151

I’m 26 and would very much like to go
back in time and shout at my 16 year
old self for starting smoking. (...)

author: andthecircus, score: 92, 1∆

I shall dissect your post line by
line. For reference I am an 19 year
old male. (...)

author: Rainymood_XI, score: 8, 2∆
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Explicit Gender Disclosures in ChangeMyView

RQ1 When and why do people disclose their gender?

RQ2 How does the forum community react to gender
disclosures?

RQ3 Are there stylistic differences related to authors gender?
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Data: Find CMV Posts with Gender Disclosures

▶ Start from CMV (∼20k posts and 1M replies)
(Tan et al., 2016)

▶ Filter all posts:

me as a
I am
I identify as
(...)

tall
rich
white
(...)

woman
nonbinary
male
(...)

▶ Two human annotators
▶ quoted speech: They don’t want to hear ‘I’m nonbinary
▶ hypothetical situations: If I am female

44 / 63



Data: Initial Size

Posts Replies Discussions Authors

total 396 3,235 1,812 2,456

male 299 1,953 1,357 1,640
female 89 961 693 674
other 8 321 175 158
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Data: Annotate Additional Features
CMV: I am a 16 year old who wants to start smoking.

I am 16, female, and I think I should be allowed to smoke. I know about lung
cancer and what it can do to you, and I’ve seen all those adverts about bad
breath and rotting gums. (...)

author: llosa, score: 16, comments: 151
explicit gender: F, author gender: F, comment features,

∼80 style features

I’m 26 and would very much like to go
back in time and shout at my 16 year
old self for starting smoking. (...)

author: andthecircus, score: 92, 1∆

I shall dissect your post line by
line. For reference I am an 19 year
old male. (...)

author: Rainymood_XI, score: 8, 2∆

avg comment score
% of comments with explicit gender [m|f]
% of comments with author gender [m|f]

▶ Extended author gender information
Posts Comments

male 2,253 227,261
female 396 53,042
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RQ1: When Do People Explicitly Mention their
Gender?

0 100 200 300 400
Number of nodes (posts and replies)

Circumcision, infant, foreskin
Games, gamergate, game

Women, men, female
Gay, pride, straight

Black, white, racism
Attractive, women, dating

Toilet, bathroom, wash
Rape, victim, victims

Feminism, men, feminist
Gender, transgender, trans

male
female
other

▶ Topics relate to gender or situations in which the set of
experiencers is unbalanced

▶ All topics addressed by males and females
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RQ1: Why Do People Explicitly Mention their Gender?
▶ Establishing the speaker’s credibility (Falk and Lapesa, 2022)

CMV: If I was raped or sexually assaulted I probably wouldn’t report it.

Preface: I’m a 23 year old woman. I believe that my life would be far worse off (...)

▶ An implicit rebuttal (Habernal and Gurevych, 2017)

I think that feminism currently uses hate speech as a way to advance its goals.
In fact, this attitude hurts the advancement of women. CMV

I’ll start by saying I’m 26 male. (...)

▶ A combination of a credibility with a concession (Musi, 2018)

CMV: I think the feminist movement was detrimental to society.

Firstly I’d just like to point out that I am female. Secondly I’d like to clarify that I’m all
for equality between all people. However, (...)
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RQ2: Who Reacts to Explicit Gender Mentions?

▶ Logistic regression model:
▶ explicit gender as dependent variable
▶ all features as independent variables (no style features)

▶ Standardized beta values for significant (Pr(|z|)< 0.05)
terms

▶ Pseudo R2 = 52%
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RQ2: Who Reacts to Explicit Gender Mentions?

explicit gender in comments [m]

explicit gender

author gender in comments [f]

number of comments

avg comment score

explicit gender in comments [f]

author gender in comments [m]

femalemale

▶ Explicit mentions strongly define the commenting population
▶ Argument-counterargument discourse
▶ Quantity and quality of interaction higher for female posts
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RQ3: Are there Style Differences?

▶ Logistic regression model
▶ author gender as dependent variable
▶ include style features in independent variables

▶ Standardized beta values for significant (Pr(|z|)< 0.05)
terms

▶ Pseudo R2 = 61%
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RQ3: Are there Style Differences?

clarity component

author gender

author gender in comments [f]

author gender in comments [m]

femalemale

▶ gender-dependent engagement stays, but not in explicit mentions
▶ style-related differences (Morales Sánchez et al., 2022)
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Takeaways: Inequalities in CMV

▶ Explicitly mentioning gender has a persuasive function
▶ Reddit is male-skewed

▶ Reaction imbalances
▶ comments from users of the same gender
▶ explicit gender mentions from users of the opposite gender

▶ Gender-related style differences
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Gender-related Inequalities in Data

▶ Gender-related inequalities and subtle biases

▶ Need for a discussion within the communities
→ England men’s national football team
→ List of female jazz singers
→ Women’s suffrage → Men’s suffrage?

54 / 63Framework for Gender Bias by Dinan et al. (2020)



How to Remove Biases from Data?

▶ Language is inherently biased

▶ "(...) records human interpretations that are situated in a
specific time, place, and worldview"

(Haraway, 1988; Havens et al., 2020)
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Steps towards Bias-aware NLP Systems

NLP MethodResources

Output

Computer Science

NLP Intelligent System

Applied NLP

1. Diagnose biases in primary data
2. Understand their impact on NLP methods
3. Make biases transparent in NLP architectures
4. Assist end users in developing NLP solutions
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Future Directions
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Understanding Impact of Subtle Biases

DANIS: Diversity-Aware
NLP Intelligent Systems

SEAL: Use and Effects of
Androcentric Language

(under review)

Pema Gurung
Quy Nguyen

Hongyu Chen Raphael Heiberger
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Androcentric Language (AL)

Linguistic constructions reflecting gender-related power
asymmetries

(Friedman and Nissenbaum, 1996; Formanowicz and Hansen, 2021)
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Categories of Androcentric Language

1. Male generics
▶ beim Arzt
▶ byłem u lekarza

(Moulton et al., 1978)

2. Mentioning men first
▶ Ärzte und Ärztinnen
▶ Panowie i Panie

(Benor and Levy, 2006)

3. Comparing women to men
▶ women earn less than men
▶ 10 zaskakujących rzeczy, które kobiety robią znaczniej

lepiej od mężczyzn
(Bruckmüller et al., 2012)
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ASEAL: Use and Effects of Androcentric Language

Nochmal beim Arzt
gewesen. Diesmal
eine andere Ärztin,

die mir (...))

▶ Which linguistic features characterize AL?
→ English, German

▶ Who uses androcentric language? Which domains?
→ public figures

▶ What is the impact of AL on NLP models?
→ language modeling, question answering

▶ Facilitate AL-aware design
→ tools for modeling AL, data and model statements
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Take-home Message
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Steps Towards Bias-Aware NLP Systems

Computational Social
ScienceComputer

Science
Comp.

Linguistics

Applied NLP

Bias

63 / 63



Thank you
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